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Ordering process in quenched block copolymers at low temperatures

Y. Yokojima and Y. Shiwa
Division of Materials Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

~Received 20 March 2000!

We have studied domain growth of symmetric diblock copolymers undergoing microphase separation at low
temperatures. We introduce a phenomenological nonlinear diffusion model with order-parameter-dependent
mobility. Performing two-dimensional simulations, we find that the time-dependent scattering function exhibits
dynamical scaling with a logarithmic growth law in the strong segregation limit where surface diffusion is the
relevant mechanism for coarsening.

PACS number~s!: 64.60.Cn, 61.41.1e, 64.75.1g
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I. INTRODUCTION

A linear A-B diblock copolymer consists of a long se
quence of typeA monomers covalently bonded to a chain
typeB monomers. A characteristic feature of diblock copo
mers is the connectivity between chemically distinct bloc
Because of this severe constraint a phase separation tha
curs when the temperature is lowered cannot proceed
macroscopic scale; unlike binary mixtures of low molecu
weight fluids, separation on the microscopic length scale
sues, commonly referred to as microphase separation. In
paper we consider only symmetricA-B diblock copolymers
with equal-length subchains, in which competing interactio
between short- and long-range forces result in a stable
ered~lamellar! phase with alternatingA- andB-rich domains.

We study the dynamical evolution of the micropha
separation after a sudden change of temperature from
disordered state to the state below the coexistence cu
After the quench the system becomes unstable and lam
of arbitrary orientation emerge. The subsequent evolution
the pattern involves reorientation of lamellae trying to att
parallel stripes of sizable extent. Owing to the existence o
spatial period (2p/k0) of the ordered structure, the dynami
of domain coarsening of the lamellar patterns is quite intri
ing in comparison with the case of macroscopic phase s
ration for which k050. It has thus been under extensi
investigation~mostly by numerical simulations! @1–4#. Un-
fortunately, however, no successful theoretical formulation
yet available for the problem, particularly for the asympto
behavior. Furthermore, many of the previous studies
volved a system subjected to a shallow quench or in a w
segregation region.

In contrast to the often investigated weak segrega
limit, much less is known about the strong segregation li
or deep quench. By ‘‘deep quench’’ we mean quenching
the low temperature region where the equilibrium value
the order parameter is close to that of zero temperature
deep quench then results in enhanced segregation in
A-rich domains are purer inA than in the case of a shallow
quench. Therefore, if one assumes that the phase separ
proceeds by exchange of neighboringA and B monomers,
the probability of such an exchange in the bulk is grea
reduced for deep quenches. Diffusion along the interface
domains~to be called surface diffusion! is then expected to
play a dominant role.
PRE 621063-651X/2000/62~5!/6838~8!/$15.00
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For spinodal decomposition for whichk050, the late
stage coarsening of domains is characterized by a power
increase of the typical domain sizel ;ta with the growth
exponent a, where t is time @5#. The surface-diffusion
mechanism for domain growth is known to yielda51/4, in
contrast to the usual bulk-diffusion @evaporation-
condensation or Lifshitz-Slyozov~LS!# mechanism which
gives rise to the LS valuea51/3.

For microphase separation, instead, the dynamics
comes exceedingly slow and the usual coarsening me
nism of evaporation-condensation seems to givea'1/5 @4#.
Because of this much smaller growth exponent, one m
naturally wonder whether the power-law growth is followe
in deep quenches. This is a highly nontrivial question sin
suppression of the bulk diffusion would now produce an a
parent pinning of the phase separation. It is not even c
that scaling behavior need exist at all in this case. Our re
in this paper provides some interesting insights into t
problem.

We first introduce a modified time-dependent Ginzbu
Landau-type model for phase-separation dynamics in wh
the mobility is order-parameter dependent~Sec. II!. In Sec.
III, we present numerical results obtained from our model.
Sec. IV, interpretation of the result for the strong segregat
limit is given. Section V ends this paper with a summary a
discussion.

II. DYNAMICAL MODEL

We consider diblock copolymers consisting ofA and B
blocks. Each monomer block has a local volume fract
f i( i 5A,B). Takingf5fA2fB as the order parameter, w
assume that the model free energy functionalF$f% consists
of short-range and long-range parts:

bF$f%5Fs$f%1Fl$f%, ~1!

where b51/kBT, kB is Boltzmann constant, andT is the
temperature. The short-range part is of the usual Ginzbu
Landau form and is given by

Fs$f%5E dr S c

2
~¹f!21W~f! D , ~2!
6838 ©2000 The American Physical Society
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wherec is a positive constant,W(f) is an even function of
f with two minima atf56fe , and W(f)→` for f→
6f0(0,fe,f0). The long-range part is given by@6#

Fl$f%5
b

2E drE dr 8f~r !G~r ,r 8!f~r 8!, ~3!

where b is a positive constant, andG(r ,r 8) is defined
through the relation

¹2G~r ,r 8!52d~r2r 8!. ~4!

The Coulomb-type repulsive interaction represents the
motic incompressibility arising from the connectivity of di
ferent monomer blocks in each chain, and is inherent in
microphase separation.

With this free energy, we consider the following dynam
cal model for the time evolution of the order-parameter fie

]f~r ,t !

]t
5“•M ~f!“

dF$f%

df~r ,t !
, ~5!

whereM (f) is the diffusion coefficient~mobility!. With a
constant mobility, the model~5! is the ordinary time-
dependent Ginzburg-Landau~TDGL! equation @1#. It has
been much used@2–4# in the study of microphase separatio
in which the domain growth is governed by bulk diffusio
However, as has been noted by several authors@7,8#, in the
context of macrophase separation kinetics, the mob
should be taken to be dependent on the order-parameter
in order to capture the main features of the constrained
operative dynamics at low temperatures. For sufficiently l
temperatures, where the equilibrium valuefe is close tof0,
the mobility becomes vanishingly small except near the
terface between domains; then diffusion occurs only alo
the interface. We therefore take the mobility in the model~5!
to be given by@7,8#

M ~f!5M0~f0
22f2!, ~6!

where M0 is a positive constant. The form~6! takes into
account the decrease in bulk diffusion as the temperatu
lowered, and contains the surface-diffusion effect autom
cally. It is convenient in the following to use the scaled ord
parameterc[f/fe . SettingM0f0

251 without loss of gen-
erality, Eq.~6! can be written as

M ~c!512a2c2. ~7!

Herea[fe /f0 measures the depth of the quench, the va
of which varies from 0 to 1 as temperature is reduced,
a51 at T50 in particular.

We have carried out computer simulations of the abo
model. Simulations have been done by means of the c
dynamical-system~CDS! method@9#. At each time stept we
assign a scalar variablec(n,t) corresponding to the orde
parameter fieldc(r ,t) to each lattice site (nth cell! on 256
3256 square cells with periodic boundary conditions. T
Laplacian is replaced by the isotropically discretized equi
lent @¹2#d , involving both nearest and next-nearest neig
bors:

@¹2#dX56~^^X&&2X!, ~8!
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where ^^X&&5(1/6)(nnX1(1/12)(nnnX, nn(nnn) repre-
senting nearest~next-nearest! neighbor cells. The form of the
force dW/dc is taken to be

2
dW~c!

dc
5A tanh~Ãc!2c, ~9!

whereÃ5arctanh(1/A), so that the minima ofW(c) are at
c561 for anyA.0, as required.

The local conservation law is implemented by consider
the Kawasaki exchange dynamics@8#. Thus we obtain the
CDS equation corresponding to Eq.~5!, which reads

c~n,t11!5c~n,t !1^^C„n, j ;sgn@J~n,t !2J~ j ,t !#…

3@J~n,t !2J~ j ,t !#&&, ~10!

with

C~ i , j ;a!5@11aac~ j ,t !#@12aac~ i ,t !# ~11!

and

J~n,t !5A tanh@Ãc~n,t !#2c~n,t !1D@^^c~n,t !&&

2c~n,t !#1B@¹22#dc~n,t !. ~12!

D andB are positive constants corresponding toc andb in
Eqs. ~2! and ~3!, respectively. The operator@¹22#d is the
inverse of the CDS Laplacian@¹2#d , and is computed using
a standard fast-Fourier-transform technique.

In passing, reference may here be made to a linear
analysis of Eq.~10!. The wave numberke of the equilibrium
pattern is obtained as the solution of 2J0(ke)1J0(A2ke)
53(12AB/6D), whereJ0(z) is the Bessel function of the
first kind. One also finds that the interface thicknessj can be
estimated from the equation 2J0(kd)1J0(A2kd)53@11(1
2AÃ)/D# to bej52p/kd .

III. NUMERICAL RESULTS

We have performed a numerical simulation of Eqs.~10!–
~12! with the initial condition for thec ’s consisting of uni-
formly distributed random values between60.05. Each run
is repeated with five different initial configurations to ave
age over. We set the constanta at either 0 or 1, and call thes
cases the weak segregation limit and the strong segrega
limit, respectively. Figure 1 exhibits the patterns obtain
after 105 time steps for these limits with the same initi
condition.

We computed the circularly averaged scattering funct
S(k,t). It is defined byS(k,t)5^c(k,t)c(k,t)& where the
angular brackets refer to an ensemble average as well a
average over the orientation of the wave vectork; c(k,t) is
the Fourier transform of the order parameter,c(k,t)
5( re

ik•rc(r ,t), andk can take valuesk5(2p/L)(mx ,my)
where mx and my have integer values between2L/2 and
L/221 for a lattice of sizeL3L (L5256). The order-
parameter profiles are hardened before computing the s
tering function using the transformationc→sgnc. We fitted
S(k,t) to a squared Lorentzian form,

S~k,t !5a2/@~k22b2!21c2#2, ~13!
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FIG. 1. Thec field after 105 time steps fora50 ~a! and 1.0~b! with the same initial condition. The bright regions denote positive val
of c, while the dark ones are for negativec. The lower part exhibits the cross section along the horizontal line in the middle portion o
pattern above, and represents the domain-wall structure. The numbers along the vertical axes denote order-parameter values.
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where the fitting parametersa,b, andc should not be con-
fused with the basic constants of our model. We have t
extracted the full width at half maximumDk(t) and the peak
height SM(t) of S(k,t). ~We have also performed a fit to
Gaussian form and this made no difference to our resu!
As an example, the time evolution ofS(k,t) for the strong
segregation limit is shown in Fig. 2~a!, and the solid curve in
Fig. 2~b! is the best fit to the data using the form~13!.

Before we proceed, a remark is in order. As far as
growth exponent is concerned, systems of sizes 2562 and
5122 show almost identical results in the case of the we
segregation limit~see Ref.@4#!. For the strong segregatio
limit, the correlation range is much smaller thanL/2 @see Fig.
4~b! below#. Therefore we judge that finite-size effects we
avoided in our numerical simulations.

A. Weak segregation limit „aÄ0…

The parameters used for this case areA53.7, B50.02,
andD50.036, so thatke51.00 andj53.8. Since the equi-
librium lamellar spacing~periodicity! l may be estimated by
the relationl52p/ke , the chosen set of parameters yiel
j/l50.60, corresponding in fact to weakly segrega
lamellae. Figure 3~a! shows the time dependence of the pe
positionkp(t) of S(k,t). Notice that at late times the syste
has almost attained the equilibrium lamellar thickness, wh
could not be distinguished from the value of 2p/ke deter-
mined from the linear analysis.
s
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Even in that time region, however, narrowing of the sc
tering profile and an increase of peak intensity occur
gradually, indicating domain coarsening processes. In F
3~b! we plot the widthDk(t) and peak heightSM(t) as a
function of time. Identifying 2p/Dk(t) with the average do-
main sizel (t), we find that this characteristic length scale
well fitted by a power lawl (t)}ta with a'1/5. The same
scaling is found for the peak height,SM(t);tb with b5a.
This implies that the scattering function obeys the scal
law S(k,t)5l (t) f „(k2ke)l (t)…, f being a scaling function.
All these results just confirm the previous findings of n
merical work@4# done in the weakly segregated regime.

Before proceeding to the strong segregation case, a co
of comments are in order. In contrast to the strong segre
tion limit where bulk diffusion is essentially inhibited, su
face diffusion is expected to be an irrelevant effect in t
weak segregation kinetics. We have performed simulati
with the same values of parameters except for thea value. As
expected, foraÞ0 the numerical data forDk(t), kp(t), and
SM(t) revealed little change from the results given fora
50 in Fig. 3.

The power-law growth with exponent'1/5 has also been
found in the pattern dynamics of Rayleigh-Be´nard convec-
tive rolls @10#. It is thus suggested@4# that these stripe-
pattern forming systems~i.e., block copolymers and therma
convective systems! belong to the same universality class
coarsening dynamics. However, we have no good theore
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understanding of the observed growth exponent at prese

B. Strong segregation limit „aÄ1…

The parameter values we now use areA53.7,B50.0001,
andD50.02, so thatj/l50.10. In Fig. 2~a! we show a plot
of S(k,t) versust. We observe that even att5105 the peak
position is still moving toward the equilibrium position
which should be close toke50.30. See Fig. 3~a! for com-
parison. The peak height and the length scale data obta
from the fitting are displayed in Fig. 4 as a function of tim
Notice that the data are plotted on a semilogarithmic sc
At late times we get a good straight-line fit to the data in F
4, demonstrating the scalingSM(t);2p/Dk(t);2p/kp(t)
; log10t. In particular, writing 2p/Dk(t)5n log10(t/t0)

1const and 2p/kp(t)5 ñ log10(t/t1)1const, we findn5 ñ
'3.760.4. This suggests the existence of a character
length scale with a logarithmic growth law.@Note that the
value of the slope of theSM(t)vs log10t curve need not equa
the aboven value. This is because the ‘‘exponent’’g of the
growth lawg log10t(5 log10t

g) contains a normalization con
stant that one chooses for the corresponding quantity.# In the

FIG. 2. ~a! Time evolution of the circularly averaged scatterin
function S(k,t) for the strong segregation limit;S(k,t) is in arbi-
trary units, and the times are, from lowest to highe
400,1000,4000,8000,15 000,30 000,60 000, and 100 000.~b! S(k,t)
after 105 time steps as a function of the wave number. The so
curve is the best fit to the data~open circles! using a squared
Lorentzian form.
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next section, interpretation of the logarithmic behavior
terms of interacting kinks is given.

IV. KINK DYNAMICS INTERPRETATION

In the strong segregation limit atT50, the flux is local-
ized at the interface, and only the tangential~to the interface!
component gives a dominant contribution on the right-ha
side of the evolution equation~5!. In order to study this
surface~interfacial! diffusion effect on domain growth, we
resort to a phase dynamics description@11,12#. The basic
assumption here is that at late stages of coarsening
surface-diffusion mechanism is associated with a slow va
tion of the wave vector along the interface of lamellar p
terns. This then allows us to expect that the interfacial dif
sion behavior of our interest is present already in the pha
field description of the constant-diffusion model.

We thus begin with the dynamic equation.

]f

]t
5¹2@2~t1¹21b¹22!f1f3#, ~14!

where the form of the potentialW(f) in Eq. ~2! has been
chosen to be the usual one:W(f)5(t/2)f21(1/4)f4, t

,

d

FIG. 3. ~a!A lin-log plot of the peak positionkp vs t, and~b! a
log-log plot of the widthDk (L) and the peak intensitySM (s) vs
t of the scattering function for the weak segregation limit. T
inserted line has the slope 0.20.



n
e

u

in

r

f
f
line

he
e

t
e

es

is

ld
-

t

a-

te

6842 PRE 62Y. YOKOJIMA AND Y. SHIWA
being a constant. We seek slowly varying lamellar solutio
to Eq. ~14!. To that end we introduce slow space and tim
variables

X5dx, Y5dy, T5d2t ~15!

and a slow phase variable

Q~X,Y,T!5du~x,y,t !. ~16!

The dimensionless parameterd is the ratio of lamellar size to
system size, and is an expansion parameter of our subseq
analysis. The local wave vector of lamellae is given by

k~X,Y,T!5¹u5¹XQ ~17!

with X5(X,Y). We develop the solution as an expansion
d:

f~x,y,t !5 (
n50

dnf (n)~u;X,Y,T!, ~18!

where eachf (n) is 2p periodic inu. The phase equation fo
k (Q) arises as a solvability condition forf (1). Referring the
reader to Ref.@13# for details, we thus obtain

FIG. 4. A lin-log plot of ~a! the peak heightSM vs t, and~b! the
width Dk (L) and the peak positionkp (s) vs t of the scattering
function for the strong segregation limit. The straight line inser
in ~b! has the slope 3.7, while in~a! it has the slope 6.0.
s

ent

v21~k!]TQ5D i~k!~ k̂•¹!k1D'~k!k“• k̂1d2R¹4Q
~19!

where k̂5k/k. The explicit forms forv(k), D i(k), and
D'(k) are given in Ref.@13#. In Eq. ~19! we have added a
regularization term (}d2) corresponding to the bending o
the phase surface so that Eq.~19! may describe all features o
patterns in both the smooth regions and the regions with
and point defects@12#. The coefficientR will be determined
later.

Let us now examine a special class of solution of t
phase diffusion equation~19! when k approaches the wav
number of equilibrium lamellae@which turns out to be very
close to ke[b1/4, the value determined from Eq.~14! by
linear analysis# and the far field is almost a field of straigh
parallel lamellae. Becauseke is also the wave number for th
onset of the zigzag instability@13#, the resistance of the
lamellae to perturbations with variations along their ax
weakens whenk→ke . If k5ke1O(d), in accordance with
our slow scales~15!, the wave number along the lamellae
of orderAd. Thus we put@12#

Q~X,Y,T!5keX1dC~j[X/ke ,h[Y/Ad,T!, ~20!

and find

v21CT5~D i /ke
2!@Cjj12ChCjh1~Ch!2Chh#

1~D' /d!Chh2RChhhh , ~21!

to the lowest order in d. Here in Eq. ~21! v21

[v21(ke),D i[D i(ke),D'[D'(k→ke), and we have used
the fact thatv215O(1),D i5O(1), andD'5O(d). More
explicitly,

v215
2

3
ke

2e, D i5
8

3
ke

4e,

D'5
4

3
ke

2e@2Cj1~Ch!2#d, ~22!

wheree[(t2tc)/ke
2 measures the distance from thresho

tc[2ke
2 for a lamella-forming instability. Therefore we ob

tain

CT54Cjj18ChCjh16~Ch!2Chh14CjChh2R̃Chhhh

~23!

with R̃[3R/2ke
2e. The easiest way to find the coefficien

R(R̃) is to match Eq.~23! to the corresponding phase equ
tion in the small amplitude limit@11,12#. The latter equation
can be obtained from the envelope~amplitude! equation for
the model~14!, which reads@13#

]A

]T
5Fke

423ke
2uAu214ke

2S ]

]X
2

i

2ke

]2

]Y2D 2GA, ~24!

where

f~x,y,t !5e1/2A~X,Y,T!eikex1c.c. ~25!

d
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FIG. 5. A schematic represen
tation of the local lamellar con-
figurations~in two dimensions! at
two different times in the strong
segregation limit. Top: The curve
indicate domain walls~interfaces!,
l being the spatial period of the
lamellae. Bottom: A cross section
along the lowesth axis. The kink
configuration at a much later time
after kink-antikink annihilation is
shown on the right.
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with X5e1/2x, Y5e1/4y, and T5et. Setting A(X,Y,T)
5A0 exp@iC(X,Y,T)# in Eq. ~24!, and taking the imaginary
part of the resulting equation, we reproduce exactly Eq.~23!

with R̃51.
In the strong segregation regime where the dominant d

ing force of coarsening is surface diffusion,C varies faster
along the lamellae than across them. Hence in Eq.~23! we
may putCj'const. Denoting this constant ask ~which rep-
resents the distance fromke), we then obtain

CT.6~Ch!2Chh14kChh2Chhhh . ~26!

Equivalently, withF[Ch , we have

]TF52]h
2F314k]h

2F2]h
4F5]h

2 dF̂

dF
,

F̂5E dh@2kF21 1
2 F41 1

2 ~]hF!2#. ~27!

This is the one-dimensional TDGL equation for the co
served field. Note thatk.0 in the late stages of coarsenin
as can be seen from Fig. 2. Hence we expect thatF→0 as
t→`. This suggests the following picture for the evolutio
of the order parameterf. Since in the late stage of mi
crophase separation in which we may restrict ourselves to
wave number region wherek;ke , ¹2 in Eq. ~14! may be
replaced@14# by 2ke

2 . Note also that, due to the absence
spatial periodicity inF(h), the order parameterf also can-
not have periodicity alongh axis. Hence the evolution off
is expected to be governed by the so-called~one-
dimensional! model-A dynamics @15#. Recall that we are
concerned with the late stages of phase ordering in the st
segregation limit. Thus the domain-wall profiles are those
kinks, and the domain coarsening proceeds via annihila
of kink-antikink pairs along the interface. Figure 5 illustrat
this scenario schematically.

For model A, the annihilation processes of interactin
kinks have been studied by Kawasakiet al. @16–18#. The
attractive interaction between an adjacent kink and antik
decays exponentially with their separation distance, and
time required to eliminate the pair is also exponentia
-

-

he

f

ng
f
n

k
e

large. This results in a logarithmic growth law, namely, t
domain sizel (t) evolves according to

l ~ t !5nj ln~ t/t0! ~28!

with some constantsn andt0. Thej in Eq. ~28! is the effec-
tive width of the domain wall.

Let us compare our result from computer simulations w
the above Eq.~28!. For the parameters used in our CD
simulation of the strong segregation limit, we estimatej
52.2. Identifying the characteristic widthDk(t) @or the peak
position kp(t)# of the scattering functionS(k,t) with
2p/l (t), we findn51.060.1. This value is to be compare
with the result of Nagai and Kawasaki@17#; they performed
a molecular dynamics simulation of the one-dimensio
kink equation deduced from the modelA, and reported the
relation~28! with n53.560.2. The smallness of then value
that we have extracted from our data in comparison with
Nagai-Kawasaki result for the one-dimensional kink syst
should be ascribed to the higher dimensionality of our s
tem.

As mentioned already, the pairwise attractive force b
tween kinks is exponentially weak. A very small influen
~either external or due to defects! can then act to pin the
patterns. It gives rise to a glassy dynamics analogous to
slow dynamics of spin glasses or ordinary glasses.@In this
connection we remark that in the glass literature@19# it has
been suggested that the average domain length~or the so-
called dynamical correlation length! jg(t) after a quench to a
very low temperatureT grows asjg(t);tBT with a constant
B.# In two dimensions defects other than kinks are se
generated dynamically. Therefore the theoretical descrip
of our ordering process should be two dimensional, althou
it can be reduced approximately to the one-dimensio
problem as we showed above. This also explains why
observe labyrinthine patterns such as those in Fig. 1~b!,
whose typical size is of the order of just a few lamell
spacings@cf. Fig. 4~b!#.

V. SUMMARY AND DISCUSSION

We have studied the effect of bulk and surface diffusi
on the domain coarsening of microphase separation



in
od
h
fo

bl
s

a
by

t
el

t
;
th

ls

n

1/
ffi
v

i-

o
-

w

th
a

at
val

law
es
er

a
eg-
re-
-

e
a-
e
of

i-
rs.

n of

hed

of
slow
e to
hat
res-
ase

one-
x-
ip-

in
ork
ars-

r-
T.

6844 PRE 62Y. YOKOJIMA AND Y. SHIWA
diblock copolymers. We expect our TDGL model to be
the same dynamical universality class as a suitable m
with order-parameter-dependent mobility for the Rayleig
Bénard convection system. Although the order parameter
block copolymer lamellar phases is a conserved varia
nonconserved dynamics are appropriate in the late stage
coarsening because of our restriction tok'k0, the wave
number of the final equilibrium pattern. In the case of
constant diffusion coefficient this is in fact borne out
numerical work@4#.

The strong segregation limit (a51) studied in the presen
paper is interesting only insofar as it is experimentally r
evant, since the effective quench deptha is not unity at any
finite temperature. However, as stressed by Ohta@20#, the
value of the parametera can be very close to unity even a
the temperatureT5Tc/2 whereTc is the critical temperature
for example, according to Onsager’s exact solution of
two-dimensional Ising model,a50.999 for T/Tc50.5.
Therefore the description presented in Sec. III B should a
be valid at finite and low temperatures.

As far as a system undergoing spinodal decompositio
concerned, both analytical@20# and numerical@21# studies
have shown that the algebraic behavior of domain growth
low temperatures changes continuously with time from a
to a 1/3 power law; as the growing domains become su
ciently coarsened, the bulk-diffusion mechanism takes o
eventually. An estimation has been given@20# of the critical
domain size (l c) for which the crossover occurs. It is est
mated as

l c;
j

1/a221
, ~29!

and in the regionl ,l c surface diffusion is dominant while
for l .l c bulk diffusion governs the coarsening.

We note that the order estimate~29! is derived on the
basis of the interface equation of motion. When applied t
microphase-separating system@3#, the interface-equation ap
proach simply fails to reproduce the growth exponenta
'1/5. However, having no successful theory at hand,
will be content to use the expression~29! in characterizing
the putative crossover of our copolymer systems in
strong segregation regime. We then estimate that for par
eter values used in Sec. III B the crossover from lnt to t1/5
s.
,

el
-
r

e,
of

-

e

o

is

at
4
-

er

a

e

e
m-

growth occurs att;10350 time steps forT5Tc/2. Therefore
logarithmic growth seems to be experimentally relevant
low temperatures, holding over an appreciable time inter
@22#.

In order to probe the expected crossover to power-
growth, we have performed simulations with variable valu
of a with j/l50.10. However, no evidence of a crossov
was observed. For example, at values ofa and j for which
most of the time range is predicted by Eq.~29! to be bulk-
diffusion dominated, the data were not well fitted by
power-law scaling such as we have found for the weak s
regation regime. From this result combined with those p
sented in Sec. III, we conclude that~i! in the weak segrega
tion regime@j/l;O(1)#, power-law scalingl (t);ta with
a.1/5 is obeyed;~ii ! in the strong segregation regim
@j/l!1#, no scaling law is at work except at low temper
tures (a'1) for which logarithmic growth characterizes th
late-stage ordering kinetics. This indicates the relevance
the parameterj/l, which is absent in spinodal decompos
tion, for the ordering process in quenched block copolyme
However, we do not have a general answer to the questio
how the measurable quantities such asl (t) are related to
j/l. Obviously a theoretical understanding of thet1/5 growth
is a crucial prerequisite, but so far this has not been reac
even on a qualitative level.

We have found that for the strong segregation limit
deep quenches the late evolution becomes exceedingly
and the system remains in a quasipinned state. This is du
the existence of a nonequilibrium partially ordered state t
becomes stable over an appreciable time interval in the p
ence of topological defects such as disclinations and ph
grain boundaries. The absence of those defects in the
dimensional~1D! kink system makes less reliable the e
trapolation of the result for the 1D kink model to the descr
tion of higher dimensional systems. We hope our results
this paper motivate further theoretical and experimental w
toward understanding the role of various defects in the co
ening process of stripe patterns.
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