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Ordering process in quenched block copolymers at low temperatures
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We have studied domain growth of symmetric diblock copolymers undergoing microphase separation at low
temperatures. We introduce a phenomenological nonlinear diffusion model with order-parameter-dependent
mobility. Performing two-dimensional simulations, we find that the time-dependent scattering function exhibits
dynamical scaling with a logarithmic growth law in the strong segregation limit where surface diffusion is the
relevant mechanism for coarsening.

PACS numbegps): 64.60.Cn, 61.44:e, 64.75+¢

[. INTRODUCTION For spinodal decomposition for whicky,=0, the late
stage coarsening of domains is characterized by a power-law
A linear A-B diblock copolymer consists of a long se- increase of the typical domain sizé~t* with the growth
quence of typeA monomers covalently bonded to a chain of exponenta, where t is time [5]. The surface-diffusion
type B monomers. A characteristic feature of diblock copoly- mechanism for domain growth is known to yiedd= 1/4, in
mers is the connectivity between chemically distinct blockscontrast to the usual bulk-diffusion [evaporation-
Because of this severe constraint a phase separation that @endensation or Lifshitz-Slyozo¥lL.S)] mechanism which
curs when the temperature is lowered cannot proceed to gives rise to the LS value=1/3.
macroscopic scale; unlike binary mixtures of low molecular For microphase separation, instead, the dynamics be-
weight fluids, separation on the microscopic length scale encomes exceedingly slow and the usual coarsening mecha-
sues, commonly referred to as microphase separation. In thigsm of evaporation-condensation seems to givel/5 [4].
paper we consider only symmetiicB diblock copolymers Because of this much smaller growth exponent, one may
with equal-length subchains, in which competing interactionghaturally wonder whether the power-law growth is followed
between short- and long-range forces result in a stable layn deep quenches. This is a highly nontrivial question since
ered(lamellap phase with alternating- andB-rich domains.  suppression of the bulk diffusion would now produce an ap-
We study the dynamical evolution of the microphaseparent pinning of the phase separation. It is not even clear
separation after a sudden change of temperature from thbat scaling behavior need exist at all in this case. Our result
disordered state to the state below the coexistence curvé this paper provides some interesting insights into this
After the quench the system becomes unstable and lamellgaoblem.
of arbitrary orientation emerge. The subsequent evolution of We first introduce a modified time-dependent Ginzburg-
the pattern involves reorientation of lamellae trying to attainLandau-type model for phase-separation dynamics in which
parallel stripes of sizable extent. Owing to the existence of dhe mobility is order-parameter depend¢gec. ). In Sec.
spatial period (2r/k,) of the ordered structure, the dynamics lll, we present numerical results obtained from our model. In
of domain coarsening of the lamellar patterns is quite intrigu-Sec. 1V, interpretation of the result for the strong segregation
ing in comparison with the case of macroscopic phase sepdimitis given. Section V ends this paper with a summary and
ration for which k,=0. It has thus been under extensive discussion.
investigation(mostly by numerical simulationg1—4]. Un-
fortunately, however, no successful theoretical formulation is
yet available for the problem, particularly for the asymptotic

behavior. Furthermore, many of the previous studies in- we consider diblock copolymers consisting Afand B

volved a system subjected to a shallow quench or in a weafjocks. Each monomer block has a local volume fraction

segregation region. ¢;(i=A,B). Taking ¢ = ¢pp— ¢ as the order parameter, we
In contrast to the often investigated weak segregatiolssume that the model free energy functidRéd} consists

limit, much less is known about the strong segregation limitf short-range and long-range parts:

or deep quench. By “deep quench” we mean quenching to

the low temperature region where the equilibrium value of

the order parameter is close to that of zero temperature. A BF{¢}=Fd o} +F{g}, 1)

deep quench then results in enhanced segregation in that

A-rich domains are purer iA than in the case of a shallow \here g=1/kgT, kg is Boltzmann constant, an@l is the

quench. Therefore, if one assumes that the phase separatigfinperature. The short-range part is of the usual Ginzburg-
proceeds by exchange of neighboriAgand B monomers, | andau form and is given by

the probability of such an exchange in the bulk is greatly

reduced for deep quenches. Diffusion along the interfaces of

domains(to be called surface diffusigns then expected to :f ¢ 2

play a dominant role. Fld} dr 2(V¢) +W(e)

1. DYNAMICAL MODEL

; 2

1063-651X/2000/6(5)/68388)/$15.00 PRE 62 6838 ©2000 The American Physical Society



PRE 62

wherec is a positive constaniV(¢) is an even function of
¢ with two minima at¢=* ¢o, and W(¢)—o for ¢p—
+ ¢o(0< po< ). The long-range part is given §¥]

b
F|{¢}=§f dffdf’¢(f)G(f,f')¢(r’), )

where b is a positive constant, an&&(r,r’) is defined
through the relation
V2G(r,r'y==48(r—r'"). (4)

The Coulomb-type repulsive interaction represents the o
motic incompressibility arising from the connectivity of dif-

ferent monomer blocks in each chain, and is inherent in the

microphase separation.
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where ((X))=(1/6)2, X+ (1/12)Z,,,,X, nn(nnn) repre-
senting neareghext-nearegtneighbor cells. The form of the
force dW/dy is taken to be

dW()
dy
whereA=arctanh(1A), so that the minima ofV(¢) are at
y==1 for anyA>0, as required.
The local conservation law is implemented by considering

the Kawasaki exchange dynamif®|. Thus we obtain the
DS equation corresponding to E&), which reads

Iﬂ(n,t‘f‘l): l/f(nat)+<<c(n,j !Sgr[ﬂn!t)_ﬂj !t)])

=AtanhAy)— i, 9

With this free energy, we consider the following dynami-
cal model for the time evolution of the order-parameter field:with

ag(r.t)
at

SF{#}

Sp(r,t)’

where M (¢) is the diffusion coefficien{mobility). With a
constant mobility, the model5) is the ordinary time-
dependent Ginzburg-Landa@DGL) equation[1]. It has
been much use®2-4] in the study of microphase separation
in which the domain growth is governed by bulk diffusion.
However, as has been noted by several autfib@, in the
context of macrophase separation kinetics, the mobilit

©)

V-M(¢)V

X[J(n,t)— J(j,0)1)), (10)
Cli,j;a)=[1+aay(j,t)][1-aay(i,)] (11
and
J(n,H)y=AtanHAg(n,t)]— ¢(n,t)+ D[{{#(n,1)))
— (N, O]+ B[V 2]g(n,b). (12)

D andB are positive constants correspondingctandb in
Egs. (2) and (3), respectively. The operatgV 2], is the
yvinverse of the CDS LaplacidiV?]y, and is computed using

should be taken to be dependent on the order-parameter fieddstandard fast-Fourier-transform technique.
in order to capture the main features of the constrained co- In passing, reference may here be made to a linearized
operative dynamics at low temperatures. For sufficiently lowanalysis of Eq(10). The wave numbek, of the equilibrium

temperatures, where the equilibrium valgigis close tog,,

pattern is obtained as the solution 082ke)+Jo(\/2ke)

the mobility becomes \(anishingly _sma}ll except near the in—=3(1- \/B/6D), whereJ,(2) is the Bessel function of the
terface between domains; then diffusion occurs only alongjst kind. One also finds that the interface thicknéssn be

the interface. We therefore take the mobility in the ma&el
to be given by[7,8]

M(¢)=Mo(p5— ¢, (6)

where My, is a positive constant. The forrf6) takes into
account the decrease in bulk diffusion as the temperature

lowered, and contains the surface-diffusion effect automati

cally. It is convenient in the following to use the scaled orde

parametety= ¢/ p.. SettingM o¢§=1 without loss of gen-

erality, Eq.(6) can be written as
M(y)=1-a%y>. (7)

Herea= ¢./ ¢, measures the depth of the quench, the valu

estimated from the equationJ@(kq) +Jo(v/2kg) =3[ 1+ (1
—AA)/D] to beé=2m/ky.

Ill. NUMERICAL RESULTS

We have performed a numerical simulation of EG€)—

12) with the initial condition for they’s consisting of uni-
rformly distributed random values betweer0.05. Each run

is repeated with five different initial configurations to aver-
age over. We set the constanat either O or 1, and call these
cases the weak segregation limit and the strong segregation
limit, respectively. Figure 1 exhibits the patterns obtained
after 10 time steps for these limits with the same initial
egondition.

of which varies from 0 to 1 as temperature is reduced, and We computed the circularly averaged scattering function

a=1 atT=0 in particular.

We have carried out computer simulations of the abov
model. Simulations have been done by means of the ce
dynamical-systendCDS) method[9]. At each time step we
assign a scalar variablg(n,t) corresponding to the order
parameter field)(r,t) to each lattice siter(th cell) on 256

S(k,t). It is defined byS(k,t)=(w(k,t)¥(k,t)) where the
engular brackets refer to an ensemble average as well as an
laverage over the orientation of the wave vedtpry(k,t) is

the Fourier transform of the order parametef(k,t)
=3,e*"y(r,t), andk can take valueg=(2/L)(m,,my)
where m, and m, have integer values betweenL/2 and

X 256 square cells with periodic boundary conditions. ThelL/2—1 for a lattice of sizeL XL (L=256). The order-
Laplacian is replaced by the isotropically discretized equivaparameter profiles are hardened before computing the scat-

lent [V?],, involving both nearest and next-nearest neigh
bors:

[V2]aX=6(((X))—X), ®)

-tering function using the transformatiaf— sgny. We fitted
S(k,t) to a squared Lorentzian form,

S(k,t)=a?/[(k®—b?)2+c?]?, (13
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FIG. 1. They field after 16 time steps fom=0 (a) and 1.0(b) with the same initial condition. The bright regions denote positive values
of ¢, while the dark ones are for negatiye The lower part exhibits the cross section along the horizontal line in the middle portion of the
pattern above, and represents the domain-wall structure. The numbers along the vertical axes denote order-parameter values.

where the fitting parametews b, andc should not be con- Even in that time region, however, narrowing of the scat-
fused with the basic constants of our model. We have thugering profile and an increase of peak intensity occurred
extracted the full width at half maximurk(t) and the peak gradually, indicating domain coarsening processes. In Fig.
height Sy (t) of S(k,t). (We have also performed a fit to a 3(b) we plot the widthAk(t) and peak heighB(t) as a
Gaussian form and this made no difference to our regultsfunction of time. Identifying 2r/Ak(t) with the average do-
As an example, the time evolution &(k,t) for the strong  main size/(t), we find that this characteristic length scale is
segregation limit is shown in Fig(@, and the solid curve in - \yg|| fitted by a power law/(t)=t* with a~1/5. The same
Fig. 2(b) is the best fit to the data using the fold8). scaling is found for the peak heigts,,(t) ~t# with 8= a.
Before we proceed, a remark is in order. As far as theryig jmpjies that the scattering function obeys the scaling
9“’2‘;"‘“ exponent is concermed, systems of sizes’ 2581 (o sy 1) = /(1) f(k— ko)~ (1)), f being a scaling function.
gelgrezha?;namﬁeliegtécfa[i]r)esggrs tlr?etz(tar;r?gsesggf]rteh;ati\,\é;also‘" these results just confirm the previous findings of nu-
T ) L . merical work[4] done in the weakly segregated regime.
limit, the correlation range is much smaller that2 [see Fig. Before proceeding to the strona searegation case. a couple
4(b) below]. Therefore we judge that finite-size effects were f P 'ng g s€g gh ' P
avoided in our numerical simulations. 0 cqmments are in order. 'In cpntrast tq t e.strpr)g segrega-
tion limit where bulk diffusion is essentially inhibited, sur-
face diffusion is expected to be an irrelevant effect in the
weak segregation kinetics. We have performed simulations
The parameters used for this case are3.7, B=0.02, with the same values of parameters except fortkialue. As
andD =0.036, so thak,=1.00 andé=3.8. Since the equi- expected, fom+# 0 the numerical data fakk(t), ky(t), and
librium lamellar spacindperiodicity) A may be estimated by Sy,(t) revealed little change from the results given for
the relation\ =2m/k,, the chosen set of parameters yields=0 in Fig. 3.
&/N=0.60, corresponding in fact to weakly segregated The power-law growth with exponert1/5 has also been
lamellae. Figure @) shows the time dependence of the peakfound in the pattern dynamics of Rayleigh+Bed convec-
positionk,(t) of S(k,t). Notice that at late times the system tive rolls [10]. It is thus suggested4] that these stripe-
has almost attained the equilibrium lamellar thickness, whictpattern forming system@.e., block copolymers and thermal
could not be distinguished from the value ofrik, deter-  convective systemdelong to the same universality class of
mined from the linear analysis. coarsening dynamics. However, we have no good theoretical

A. Weak segregation limit (a=0)
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FIG. 2. (a) Time evolution of the circularly averaged scattering
function S(k,t) for the strong segregation limig(k,t) is in arbi-  log-log plot of the widthAk (¢ ) and the peak intensitg,, (O) vs
trary units, and the times are, from lowest to highestt of the scattering function for the weak segregation limit. The
400,1000,4000,8000,15 000,30 000,60 000, and 100@YB(K,t) inserted line has the slope 0.20.
after 18 time steps as a function of the wave number. The solid
curve is the best fit to the dat@pen circle using a squared
Lorentzian form.

FIG. 3. (A lin-log plot of the peak positiork, vst, and(b) a

next section, interpretation of the logarithmic behavior in
terms of interacting kinks is given.

understanding of the observed growth exponent at present. IV. KINK DYNAMICS INTERPRETATION

In the strong segregation limit &t=0, the flux is local-
ized at the interface, and only the tangentialthe interfacg
component gives a dominant contribution on the right-hand
andD=0.02, so that/A=0.10. In Fig. 2a) we show a plot  side of the evolution equatiofb). In order to study this
of S(k,t) versust. We observe that even &t 10° the peak  surface(interfacia) diffusion effect on domain growth, we
position is still moving toward the equilibrium position, resort to a phase dynamics descriptidri,12. The basic
which should be close tk,=0.30. See Fig. @) for com- assumption here is that at late stages of coarsening the
parison. The peak height and the length scale data obtaineirface-diffusion mechanism is associated with a slow varia-
from the fitting are displayed in Fig. 4 as a function of time. tion of the wave vector along the interface of lamellar pat-
Notice that the data are plotted on a semilogarithmic scalg€rns. This then allows us to expect that the interfacial diffu-
At late times we get a good straight-line fit to the data in Fig.Sion behavior of our interest is present already in the phase-
4, demonstrating the scalingy (t) ~ 2/ Ak(t) ~2m/kp(t) field descrlptlon_ of t_he constant—d!ﬁusmn model.
~ logyt. In particular, writing 2r/Ak(t) = v log;o(t/t,) We thus begin with the dynamic equation.

+const and 2r/ky(t) = v logyo(t/t;) + const, we findv="

~3.7+0.4. This suggests the existence of a characteristic d 5 5 , 3

length scale with a logarithmic growth lafiNote that the Zi VI (T VDbV d+ 97, (14)
value of the slope of th&,(t)vslog¢t curve need not equal

the abover value. This is because the “exponeny’of the

growth lawy log; ot (=log;¢t?) contains a normalization con- where the form of the potentid/(¢) in Eg. (2) has been
stant that one chooses for the corresponding quahlitghe  chosen to be the usual on@/(¢)=(7/2)¢%+ (1/4)¢*, =

B. Strong segregation limit(a=1)

The parameter values we now use Are 3.7B=0.0001,
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4r © 1(k)3r®=Dy(k) (K- V)k+D, (KkV -k + S?RV*0
] (19
2P (a)
10 _ where k=k/k. The explicit forms forw(k), D(k), and
- i D, (k) are given in Ref[13]. In Eq. (19) we have added a
) 8| regularization term ¢ 6%) corresponding to the bending of
10 ! o the phase surface so that Efj9) may describe all features of
S ST 0©°° patterns in both the smooth regions and the regions with line
Wb o ° and point defectf12]. The coefficientR will be determined
[ o later.
2 b ° 00° Let us now examine a special class of solution of the
L © phase diffusion equatiofll9) whenk approaches the wave
o PR IR ' number of equilibrium lamellagwhich turns out to be very
2 3 4 5 close tok,=b"* the value determined from Eql14) by
log;g(time step) linear analysi$and the far field is almost a field of straight
parallel lamellae. Becausg is also the wave number for the
18 " onset of the zigzag instability13], the resistance of the
(b) 000 * lamellae to perturbations with variations along their axes
! s © weakens wherlk—k,. If k=ks+O(6), in accordance with
éf 14 o 000 000 our slow scaleg15), the wave number along the lamellae is
> [ o of order+/8. Thus we pu{12]
N I © o
510 | o o0 ° O(X,Y,T)=keX+ 86U (é=XIKe, 7=YI5,T), (20)
I < o]
ﬁn o o and find
lé 6 ¢ 00° °°
vo ©°° o MW= (D /K[ W g+ 2W W, +(V )2V, ]
p 0 0 000
R | L 1 (D 1OV ,,—RY s (21
2 3 4 5 to the lowest order iné. Here in Eq. 21) o !
logio(time step) Ew‘l(ke),DHElD”(ke),DlEDl(k—>ke), and we have used
FIG. 4. A lin-log plot of (a) the peak heigh§y vst, and(b) the ;hxi)ll;gﬁltythatw =0(1).0;=0(1), andD, =0(4). More

width Ak (<) and the peak positiok, (O) vst of the scattering

function for the strong segregation limit. The straight line inserted 2 8

in (b) has the slope 3.7, while i@) it has the slope 6.0. 0 t=zk2e D”=—kge
3¢ 3¢

being a constant. We seek slowly varying lamellar solutions

to Eq. (14). To that end we introduce slow space and time 4, 2
variables D, =gkee[2W + (V)]s (22)
X=6x, Y=5y, T=5% (159 where e=(7— 7.)/k? measures the distance from threshold
7.=2k2 for a lamella-forming instability. Therefore we ob-

and a slow phase variable :
tain

O(X,Y, T)=456(x,y,t). (16) ~
V=4V +8V, ¥, +6(V,)*V, +4V, ¥, —RY,

The dimensionless paramei&is the ratio of lamellar size to (23

system size, and is an expansion parameter of our subsequent

analysis. The local wave vector of lamellae is given by with R=3R/2k2e. The easiest way to find the coefficient

_vp— R(R) is to match Eq(23) to the corresponding phase equa-
kK(X,Y,T)=VH=V0 1 A ; S .
( ) % a7 tion in the small amplitude limif11,12. The latter equation

with X=(X,Y). We develop the solution as an expansion in¢an be obtained from the envelof@mplitude equation for
5: the model(14), which readq13]

i 92\?

4 2 2 2 o
i SKEIAIP+ k| 25— 5

A, (29

By, =2 "pM(6;X,Y,T), (18) el
n=0 aT

where eachp™ is 27 periodic in 6. The phase equation for where
k (®) arises as a solvability condition fgi). Referring the .
reader to Ref[13] for details, we thus obtain H(x,y,t)=€ePA(X,Y,T)e*+c.c. (25)
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with X=€"*, Y=¢"y, and T=et. Setting A(X,Y,T) large. This results in a logarithmic growth law, namely, the
=ApexdiP(X,Y,T)] in Eqg. (24), and taking the imaginary domain size/(t) evolves according to

part of the resulting equation, we reproduce exactly (E8)

with R=1. /(t)=véIn(tlty) (28

In the strong segregation regime where the dominant drivyith some constants andt,. The £ in Eq. (29 is the effec-
ing force of coarsening is surface diffusiol, varies faster e width of the domain wall.
along the lamellae than across them. Hence in (28, we Let us compare our result from computer simulations with
may put¥ .~ const. Denoting this constant aswhich rep-  he apove Eq(28). For the parameters used in our CDS
resents the distance froky), we then obtain simulation of the strong segregation limit, we estimdte
=2.2. ldentifying the characteristic widthk(t) [or the peak
position k,(t)] of the scattering functionS(k,t) with
Equivalently, withd =", , we have 277//(t), we findv= 1.Qi 0.1. This valqe is to be compared
with the result of Nagai and Kawasdki7]; they performed
SF a molecular dynamics simulation of the one-dimensional
aT®=2af7q>3+ 4@3@—3‘2@:&%57{), kink equation deduced from the mod&| and reported the
relation(28) with v=23.5+0.2. The smallness of the value
that we have extracted from our data in comparison with the
,“::f A2k D2+ 14+ 1 (g, D). 27y  Nagai-Kawasaki result for the one-dimensional kink system
should be ascribed to the higher dimensionality of our sys-

Vi=6(V,)*V, +4k¥, —V¥ (26)

nnnn-*

L . . . tem.
This is the one-dimensional TDGL equation for the con-  Aq mentioned already, the pairwise attractive force be-

served field. Note that>0 in the late stages of coarsening yyeen kinks is exponentially weak. A very small influence
as can be seen from Fig. 2. Hence we expectdhatO as  (gjther external or due to defettsan then act to pin the

t—ce. This suggests the following picture for the evolution natems. It gives rise to a glassy dynamics analogous to the
of the order parametes. Since in the late stage of mi- g\ dynamics of spin glasses or ordinary glas§s.this
crophase separation in which we m%y_restrlct ourselves to theynnection we remark that in the glass literat[a6] it has
wave number region wherde~ke, V= in Eq. (14) may be  peen suggested that the average domain lefmttihe so-
replaced 14] by —ke . Note also that, due to the absence of cajled dynamical correlation lengti(t) after a quench to a
spatial periodicity in®(7), the order parametg also can-  very low temperaturd grows asé(t)~t®" with a constant
not have periodicity along axis. Hence the evolution @b B] In two dimensions defects other than kinks are self-
is expected to be governed by the so-callédne- generated dynamically. Therefore the theoretical description
dimensional modelA dynamics[15]. Recall that we are of our ordering process should be two dimensional, although
concerned with the late stages of phase ordering in the strong can be reduced approximately to the one-dimensional
segregation limit. Thus the domain-wall profiles are those ofyroblem as we showed above. This also explains why we
kinks, and the domain coarsening proceeds via annihilatiopserve labyrinthine patterns such as those in Fig), 1

of kink-antikink pairs along the interface. Figure 5 i"UStratesWhose typ|Ca| size is of the order of just a few lamellae

this scenario schematically. spacingdcf. Fig. 4b)].
For model A, the annihilation processes of interacting

kinks have been studied by Kawasakial. [16—18. The

attractive interaction between an adjacent kink and antikink
decays exponentially with their separation distance, and the We have studied the effect of bulk and surface diffusion
time required to eliminate the pair is also exponentiallyon the domain coarsening of microphase separation in

V. SUMMARY AND DISCUSSION
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diblock copolymers. We expect our TDGL model to be in growth occurs at~ 10*° time steps forlT=T./2. Therefore
the same dynamical universality class as a suitable moddébgarithmic growth seems to be experimentally relevant at
with order-parameter-dependent mobility for the Rayleigh-low temperatures, holding over an appreciable time interval
Benard convection system. Although the order parameter fof22].
block copolymer lamellar phases is a conserved variable, In order to probe the expected crossover to power-law
nonconserved dynamics are appropriate in the late stages gfowth, we have performed simulations with variable values
coarsening because of our restriction kKe-ky, the wave of a with £&/A=0.10. However, no evidence of a crossover
number of the final equilibrium pattern. In the case of awas observed. For example, at valuesaand ¢ for which
constant diffusion coefficient this is in fact borne out by most of the time range is predicted by E@9) to be bulk-
numerical work[4]. diffusion dominated, the data were not well fitted by a
The strong segregation limiaE 1) studied in the present power-law scaling such as we have found for the weak seg-
paper is interesting only insofar as it is experimentally rel-regation regime. From this result combined with those pre-
evant, since the effective quench deptfs not unity at any sented in Sec. Ill, we conclude th@j in the weak segrega-
finite temperature. However, as stressed by QR@, the tion regime[ &/\~0O(1)], power-law scaling”(t) ~t* with
value of the parametex can be very close to unity even at a«=1/5 is obeyed;(ii) in the strong segregation regime
the temperatur@ =T./2 whereT, is the critical temperature; [£/A<1], no scaling law is at work except at low tempera-
for example, according to Onsager’s exact solution of thgures @~ 1) for which logarithmic growth characterizes the
two-dimensional Ising modela=0.999 for T/T,=0.5. late-stage ordering kinetics. This indicates the relevance of
Therefore the description presented in Sec. Il B should alsthe parameteé/\, which is absent in spinodal decomposi-
be valid at finite and low temperatures. tion, for the ordering process in quenched block copolymers.
As far as a system undergoing spinodal decomposition islowever, we do not have a general answer to the question of
concerned, both analytich?0] and numerica[21] studies how the measurable quantities such/4g) are related to
have shown that the algebraic behavior of domain growth a¢/). Obviously a theoretical understanding of th& growth
low temperatures changes continuously with time from a 1/4s a crucial prerequisite, but so far this has not been reached
to a 1/3 power law; as the growing domains become suffieven on a qualitative level.
ciently coarsened, the bulk-diffusion mechanism takes over We have found that for the strong segregation limit of
eventually. An estimation has been gii@d] of the critical  deep quenches the late evolution becomes exceedingly slow
domain size () for which the crossover occurs. It is esti- and the system remains in a quasipinned state. This is due to

mated as the existence of a nonequilibrium partially ordered state that
becomes stable over an appreciable time interval in the pres-

, & ence of topological defects such as disclinations and phase
/e~ 1a2—1" (29 grain boundaries. The absence of those defects in the one-

dimensional(1D) kink system makes less reliable the ex-

and in the region”’ </ surface diffusion is dominant while trapolation of the result for the 1D kink model to the descrip-
for />/C bulk diffusion governs the Coarsening_ tion of hlgher dimensional systems. We hope our results in

We note that the order estimat@9) is derived on the this paper motivate further theoretical and experimental work
basis of the interface equation of motion. When applied to doward understanding the role of various defects in the coars-
microphase-separating syst¢#], the interface-equation ap- €ning process of stripe patterns.
proach simply fails to reproduce the growth exponent
~1/5. However, having no successful theory at hand, we
will be content to use the expressi¢29) in characterizing
the putative crossover of our copolymer systems in the Y.S. is grateful to T. Nagai and T. Kawakatsu for infor-
strong segregation regime. We then estimate that for paranmative conversations on kink dynamics. We also thank T.
eter values used in Sec. Ill B the crossover fromtnt*>  Kawakatsu for sending copies of related papers.
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